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Abstract

This paper applies He’s modified Lindstedt–Poincaré method to determine the periodic solutions of oscillators in a u1/3

force. The result obtained and comparison with analytical solution provides confirmation for the validity of He’s Modified

Lindstedt–Poincaré method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In nonlinear analysis, perturbation methods are well-established tools to study diverse aspects of nonlinear
problems. Surveys of the early literature with numerous references, and useful bibliographies, have been given
by Nayfeh [1], Mickens [2], Jordan and Smith [3] and Hagedorn [4]. However, the use of perturbation theory
in many important practical problems is invalid, or it simply breaks down for parameters beyond a certain
specified range. Therefore, new analytical techniques should be developed to overcome these shortcomings.
Such a new technique should work over a large range of parameters and yield accurate analytical approximate
solutions beyond the coverage and ability of the classical perturbation methods. For example, some extensions
of the Lindstedt–Poincaré perturbation method to strongly nonlinear systems, so-called He’s Modified
Lindstedt–Poincaré method, have been proposed; see the comprehensive book by He [5] and the references
therein. In He’s Modified Lindstedt–Poincaré method, a constant, rather than the nonlinear frequency, is
expanded in powers of the expanding parameter to avoid the occurrence of secular terms in the perturbation
series solution. The results show that the obtained approximate solutions are uniformly valid on the whole
solution domain and they are suitable not only for weakly nonlinear systems, but also for strongly nonlinear
systems.

There also exists a wide range of literature dealing with the approximate determination of periodic solutions
for nonlinear problems by using a mixture of methodologies [6–17].

The purpose of this paper is the determination of the periodic solutions to nonlinear oscillator equations for
which the elastic restoring forces are non-polynomial functions of the displacement by applying He’s Modified
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Lindstedt–Poincaré method. This class of equations represents a new class of nonlinear oscillating systems
which were first studied in detail by Mickens [18].
2. He’s modified Lindstedt–Poincaré method

Currently, we will study the properties of the periodic solutions to certain nonlinear oscillators by applying
He’s modified Lindstedt–Poincaré method for which the elastic restoring forces are non-polynomial functions
of the displacement. In particular, this term is chosen to be

f ðxÞ ¼ �x1=3.

As it is well known that the Lindstedt–Poincaré method [1–4] gives uniformly valid asymptotic expansions for
the periodic solutions of weakly nonlinear oscillators, in general, the technique is not applicable in case of
strongly nonlinear terms or elastic restoring forces are non-polinomial functions. Therefore, the work reported
here applies He’s modified Lindstedt–Poincaré method which also works for strongly nonlinear systems as
well as the nonlinear systems with the elastic restoring forces are non-polynomial functions of displacement.
The fundamental nature of the method is simply based on expanding both the solution and coefficient of u into
series [19–21]. In the following examples, we will illustrate the usefulness and effectiveness of the proposed
technique.

Example 1. Now, consider the following nonlinear oscillator which was first studied in detail by Mickens [18]:

u00 þ u1=3 ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0. (1)

By applying harmonic balance method and using the first-order approximate solution

u0 ’ Acosot (2)

to Eq. (1), Mickens determined angular frequency, o, as

o ¼
4

3A2

� �1=6

� 1:04912A�1=3. (3)

Mickens [22] also used the second-order harmonic balance approximation to the periodic solution of Eq. (1)
and determined o as

o ¼
1

3

4

� �
þ

27

4

� �
z̄þ

243

2

� �
z̄2

� �1=6 1þ z̄

A

� �1=3

, (4)

where z̄ is the one of the solution having the smallest absolute magnitude of the polynomial equation

1701ð Þz3 � 27ð Þz2 þ 51ð Þzþ 1 ¼ 0.

Comparing (3) with (4), it is clearly seen that the second harmonic balance approximation only provides small
corrections to the periodic solution obtained in the first approximation and is negligible. This is the expected
result.

More recently, He [5], and Xu [23], determined o as in Eq. (3) by applying homotopy perturbation method
and bookkeeping parameter method, respectively.

Now, to apply modified Lindstedt–Poincaré method, we re-write Eq. (1) in the form

u00 þ 0uþ pu1=3 ¼ 0. (5)

Supposing the constant zero in (5) can be expressed as

0 ¼ o2 þ po1 þ p2o2 þ � � � (6)
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T. Özis-, A. Yıldırım / Journal of Sound and Vibration 301 (2007) 415–419 417
and we can assume that the solution can be written in the form

u ¼ u0 þ pu1 þ p2u2 þ � � � (7)

Substituting Eqs. (6) and (7) into Eq. (5) and processing as the standard perturbation method, we have

u000 þ o2u0 ¼ 0; u0 0ð Þ ¼ A; u00 0ð Þ ¼ 0, (8)

u000 þ o2u1 þ o1u0 þ u
1=3
0 ¼ 0. (9)

Solving Eq. (8), we have

u0 ¼ A cosot. (10)

Substituting Eq. (10) into Eq. (9) results into

u001 þ o2u1 þ o1Acosotþ A1=3ðcosotÞ1=3 ¼ 0. (11)

Fourier series representation is needed for (cosot)1/3. It has been calculated [24] and is given by

cosotð Þ
1=3
¼
X1
n¼0

a2nþ1cos ð2nþ 1Þot, (12)

a2nþ1 ¼

3G
7

3

� �

24=3G nþ
5

3

� �
G

2

3
� n

� �,

with a1 ¼ 1.159595266963929. Therefore, the first several terms are

cosotð Þ
1=3
¼ a1 cosot�

cos 3ot

5
þ

cos 5ot

10
�

7cos 7ot

110
þ

cos 9ot

22
�

13cos 11ot

374
þ � � �

� �
. (13)

Substituting Eq. (13) into Eq. (11) yields

u001 þ o2u1 þ o1Acosotþ A1=3a1 cosot�
cos 3ot

5
þ � � �

� �
¼ 0. (14)

The requirement of no secular term gives

o1Aþ A1=3a1 ¼ 0 (15)

and

o1 ¼ �
a1

A2=3
¼ �

1:1596

A2=3
. (16)

If the first-order approximation is enough, then from Eq. (6), we have

o2 þ o1 ¼ 0 (17)

and the frequency can be obtained in the form of

o ¼
1:0768

A1=3
. (18)

We, therefore, obtain the following approximated period:

T ¼
2pA1=3

1:0768
¼ 5:835A1=3. (19)

For the purpose of comparison, Mickens’ first-order harmonic balance method [18], He’s homotpy
perturbation solution with first-order approximation [5] and Xu’s bookkeeping method [23] give the frequency
as A1/3o ¼ 1.0491. Mickens’ second-order harmonic balance [25] gives the calculated value of the frequency as
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A1/3o ¼ 1.0704. The exact value [26] of the frequency read A1/3oex ¼ 1.070451. Hence, the exact period is

T ex ¼
2pA1=3

1:070451
¼ 5:86966A1=3 (20)

It can be easly shown that the maximal relative error is less than 0.59%.

Example 2. The second equation to be studied is a modified version of the van der Pol equation [25], i.e.,

u00 þ u1=3 ¼ � 1� u2
� �

u0; u 0ð Þ ¼ A; u0 0ð Þ ¼ 0. (21)

Again, to apply modified Lindstedt–Poincaré method, we rewrite Eq. (21) in the form:

u00 þ 0uþ p u1=3 � � 1� u2
� �

u0
� 	

¼ 0. (22)

Supposing the constant zero in Eq. (22) can be expressed as

0 ¼ o2 þ po1 þ p2o2 þ � � � (23)

and we can assume that the solution can be written in the form

u ¼ u0 þ pu1 þ p2u2 þ � � � . (24)

Substituting Eqs. (23) and (24) into Eq. (22) and processing as the standard perturbation method, we have

u000 þ o2u0 ¼ 0; u0 0ð Þ ¼ A; u00 0ð Þ ¼ 0, (25)

u001 þ o2u1 þ o1u0 þ u
1=3
0 � � 1� u2

0

� �
u00 ¼ 0, (26)

Solving Eq. (25), we have

u0 ¼ Acosot. (27)

Substituting Eq. (27) into Eq. (26) results into

u001 þ o2u1 þ o1Acosotþ cosotð Þ
1=3
� � 1� A2cos2ot
� �

�Aosinotð Þ ¼ 0. (28)

Replacing Fourier expansion of (cosot)1/3 from Eq. (13), it follows that Eq. (28) becomes

u001 þ o2u1 þ o1Acosotþ A1=3a1 cosot�
cos 3ot

5
þ � � �

� �
þ �Ao 1�

A2

4

� �
sinot�

�A3o
4

sin 3ot ¼ 0. (29)

The requirement of no secular term gives

1�
A2

4
¼ 0 and o1Acosotþ A1=3a1 ¼ 0 (30)

and therefore, we obtain,

A ¼ 2 and w1 ¼ �
a1

A2=3
¼ �

1:1596

22=3
. (31)

If the first-order approximation is enough, then from Eq. (23), we have

o2 þ o1 ¼ 0 (32)

and the frequency can be obtained in the form of

o ¼
1:0768

21=3
¼ 0:8547. (33)
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T. Özis-, A. Yıldırım / Journal of Sound and Vibration 301 (2007) 415–419 419
Therefore, we obtain the following approximated period:

T ¼
2p

0:8547
, (34)

which agrees exactly with Mickens’ solution [25].

3. Conclusion

In summary, we conclude that the method illustrated here is very accurate for entire solution domain. It is
extremely simple and easy to use. We think that the method have great potential which still needs further
development.
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[15] Y.K. Cheung, S.H. Mook, S.L. Lau, A modified Lindstedt–Poincaré method for certain strongly non-linear oscillators, International

Journal of Non-linear Mechanics 26 (1991) 367–378.

[16] C.W. Lim, B.S. Wu, A modified Mickens procedure for certain non-linear oscillators, Journal of Sound and Vibration 257 (1) (2002)

202–206.

[17] Z.G. Xiong, H. Hu, Q. Tang, A modified eigenfunction expansion approximation for nonlinear oscillating equations, Journal of

Sound and Vibration 290 (2006) 1315–1321.

[18] R.E. Mickens, Oscillations in an x4/3 potential, Journal of Sound and Vibration 246 (2) (2001) 375–378.
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